

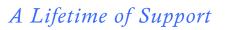
2260 Northwest Parkway Suite E Marietta, GA 30067

HELICAL PILE FOUNDATION SUBMITTAL FOR:

Meyers Solids Handling Improvements Mobile Area Water & Sewer System Mobile AL

June 6, 2022

PREPARED UNDER THE DIRECT CONTROL AND SUPERVISION OF:


THIS SEAL PERTAINS ONLY TO THE PIERS INSTALLED BY ENGINEERED SOLUTIONS OF GEORGIA. THIS SEAL DOES NOT SERVE AS OR REPRESENT THE PROJECT ENGIENER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH.

2260 Northwest Parkway Suite E Marietta, GA 30067

Table of Contents

	Page
DESIGN SUMMARY FOR PIERS 1-14	3
ENGINEERING FOR PIERS	4
DESIGN SUMMARY FOR PIERS 15-39	8
ENGINEERING FOR PIERS 15-39	9
CUT SHEETS FOR PIERS	12
PIER LAYOUT	17
ANCHOR BOLT PATTERN FOR BRACKETS	18

2260 Northwest Parkway Suite E Marietta, GA 30067

Design Summary For Piers 1-14

PIER DESIGN

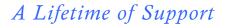
Piles: Min,2 7/8" O.D. X 0.276" W.T. with a triple 8",10",12" Helix (Or approved equal)Pile Finish: Hot Dip GalvanizedMax Pier spacing is 7' OC

Allowable geotechnical loads (FS=2)

- Axial Compression: 25K
- Axial Tension: 10K
- Lateral: 2K

INSTALLATION NOTES

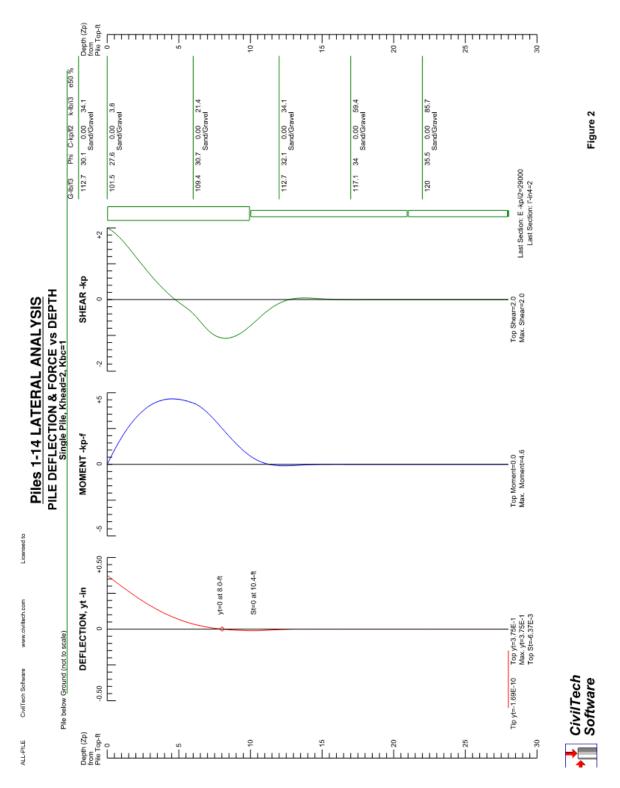
- Required minimum installation torque: 5555 ft-lbs.
- Torque not to exceed: 7,500 ft-lbs.
- Minimum helical plate depth below ground surface is 10 feet.
- Piles may need to be installed beyond the specified depth to achieve required torque.
- After pier is installed to required depth install supplemental 6" OD x 0.375" wall steel pipe 10' deep. Tremie grout inside of casing to provide bonding to helical pier shaft
- Install & lock off pier bracket to pier shaft per note 5 on cut sheet
- Attach bracket to footing using (2)
- Geotechnical information has been provided for the project by Thompson Engineering (Project # 21-1101-0057) If installed pier length in fluid soil exceeds 5ft contact ESOG engineering department.


2260 Northwest Parkway Suite E

Marietta, GA 30067

Engineering For Piers 1-14

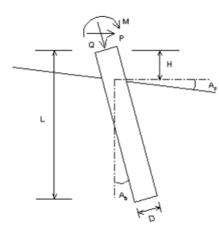
		Halid	al Dilaa		Conceitu	Coloulations			
				I-14 Axial	capacity	Calculations			
Project N		Solids Building Meyers	Plant						
	Number:	22040							
Project 7		New Foundation							TM
Project A	Address:						мас	Lea	n
		Semmes, AL,							
Compan	y Name	Engineered Solutions of	Georgia				CIVIL	PRODU	стѕ
Prepared	d By:	Raja El-Awar Review	ed By: Ma	rk E. Tomine	ey .				
Date		Wednesday, February 2	3, 2022						
		SOIL BORING	DATA			REQ	UIRED LOADS	S (Allowable)	
Borir	ng ID:	B-2		Groundwat	er 31 (ft)	Required Compres		25	kips
Death	0		Unit	Ochosica	Friction	Required Tension	Load:	10	kips
Depth	Soil	Helical Pile Diagram	Weight	Cohesion	Angle				
(ft)	Туре	J	(pcf)	(psf)	(deg)				
8	Sand	·	115	0	27				
9	Sand		115	0	29	HELIC	CAL PILE CON	FIGURATION	
10	Sand		115	ŏ	29	2.875" O.D. Pipe (0			d with a
11	Sand		115	ŏ	29				
12	Sand		115	ŏ	29	batter angle of 0 de			
13	Sand		115	ő	29	2.875" O.D. Pipe (0			
14	Sand		115	ő	29	depth of 21 feet. The		d to the structur	e using a
15	Sand		115	0	29	NCB060604CP1B	bracket.		
16	Sand	11	115	0	29	Helix 6:	None		
				-	29		110110		
17	Sand		115	0		Helix 5:	None		
18	Sand		115	0	29	Helix 4:	None		00 5 6
19	Sand		120	0	31	Helix 3:	12 in	located at	23.5 ft
20	Sand		120	0	31	Helix 2:	10 in	located at	26 ft
21	Sand		120	0	31	Helix 1:	8 in	located at	28 ft
22	Sand		120	0	31				
23	Sand		120	0	31		ETY FACTOR		
24	Sand	IT	120	0	31	Compression:	2	Tension:	3
25	Sand	11	120	0	31			Buckling:	2
26	Sand		125	0	37				
27	Sand		125	0	37		ALCULATION		
28	Sand		125	0	37	Ultimate Geotechn	ical Bearing Ca	apacity:	
29	Sand		125	0	37	105.02 kips	>	50 kips	PASS
30	Sand		125	0	37	Ultimate Geotechn	ical Tension Ca	apactiy:	
31	Sand		125	0	37	98.93 kips	>	30 kips	PASS
32	Sand		125	0	37	Mechanical Compr	ession Capacit	ty of Shaft:	
33	Sand		125	0	37	70 kips	>	50 kips	PASS
34	Sand		125	ō	37	Mechanical Tensio	n Capacity of S		
35	Sand		125	ō	37	70 kips	>	30 kips	PASS
36	Sand		125	0	37	Buckling Strength:			
37	Sand		125	õ	37	70 kips	>	50 kips	PASS
38	Sand		125	ŏ	37	Torque Capacity:		00 . apo	
39	Sand		125	ŏ	37	7500 ft-lbs	>	5556 ft-lbs	PASS
40	Sand		125	ŏ	37	10001000	-	3000 1000	
41	Sand		125	ő	37	Torque Capacity B	ased on Kt Fag	tor = 9	
42	Sand		125	0	37	I orque capacity D	used on Rurat	101 - 0	
42	Sand		125	0	37				
43	Sand		125	0	37				
44	Janu	NOTES	120	U	37				
		NOTES					ALOG NUMBE		
		onfiguration is based on i				m Description	ID		Qty
		gies. If your project requi			Bracket		NCB	060604CP1B	1
358 eval	luated pro	oduct, please contact Ma	Lean Civi	Products	Extensio			P28E84	3
at civil-csr@macleanpower.com. Prior to final pile design, Extension Shaft w/ Helix 1								N/A	0
		conducted with the propo				n Shaft w/ Helix 2		N/A	0
	mmende			-	Combo F	irst Extension		N/A	0
					Lead Sha	aft	F	P2884S81012	1



Suite E

2260 Northwest Parkway

Marietta, GA 30067


2260 Northwest Parkway

Marietta, GA 30067

LATERAL ANALYSIS

Figure 2

Suite E

Drilled Pile (dia <=24 in. or 61 cm)

Loads: Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap= 0 % Shear Condition: Static

(with Load Factor) Vertical Load, Q= 25.0 -kp Shear Load, P= 2.0 -kp Moment, M= 0.0 -kp-f

Profile:

Pile Length, L= 28.0 -ft Top Height, H= -2 -ft Slope Angle, As= 0 Batter Angle, Ab= 0 Free Head Condition

Soil D)ata:						Pile Da	ata:					
Depth	Gamma	Phi	С	K	e50 or Dr	Nspt	Depth	Width	Area	Per.	1	E	Weight
-ft	-lb/f3		-kp/f2	-lb/i3	%		-ft	-in	-in2	-in	-in4	-kp/i2	-kp/f
0	112.7	30.1	0.00	34.1	30.24	8	0.0	6	7.4	18.8	24.8	29000	0.041
2	101.5	27.6	0.00	3.8	10.31	2	10.0	2.875	2.7	9.0	2.1	29000	0.008
8	109.4	30.7	0.00	21.4	23.94	6	21.0	2.875	2.7	9	2.1	29000	.008
14	112.7	32.1	0.00	34.1	30.24	8	28.0	2.875	6.5	9	2.1	29000	.008
19	117.1	34	0.00	59.4	40.01	12							
24	120	35.5	0.00	85.7	48.08	16							

Single Pile Lateral Analysis:

Top Deflection, yt= 0.37500-in

Max. Moment, M= 4.57-kp-f

Top Deflection Slope, St= -0.00637

OK! Top Deflection, 0.3750-in is less than the Allowable Deflection= 1.00-in

Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not, the pile may fail under the load conditions.

2260 Northwest Parkway Suite E

Marietta, GA 30067

Combined Axial & Bending Capacity For Pipe Piles

	Casing O.D= Casing w.t= Corrosion Allowance= Casing I.D= Area =	0.375 in 0.000 in 5.250 in 6.627 in ² 11.883 in ³	
	Required Axial Strength (P)=	25.0 kips	
	Required Flexural Strength (M)=	-	
<u>Axial</u>	<u>Nominal Axial Strength</u> P _n =F _y *A	331.3 Kips	
	Allowable Axial Strength		
	Ω_{axial}	1.67	
	$P_{a (axial)} = P_n / \Omega_{axial}$	198.4 Kips	
	$\frac{\text{Test Axial Strength}}{\Omega_{\text{Test}}} \\ P_{a \text{ (test)}} = P_n / \Omega_{\text{test}}$	1.3 265.1 Kips	
<u>Bending</u>	<u>Nominal Flexural Strength</u> M _n =F _y *Z	594.1 k-in 49.5 k-ft	
	Allowable Flexural Strength		
	$\Omega_{ m bending}$	1.67	
	Ma (bending)=Mn/ Ω bending	29.6 k-ft	
	$\frac{\text{Test Flexural Strength}}{\Omega_{\text{Test}}}$ Ma $_{\text{(test)}}$ =Mn/ Ω_{test}	1.3 39.6 k-ft	
Combine	d Strength		
	P/Pa(bending) + M/Ma (bending)	0.28	Pile Ok
	AISC Steel Manual {13th Edition) SectionH1-1		
ida Handling	Improvements		

2260 Northwest Parkway Suite E Marietta, GA 30067

Design Summary For Piers 15-39

PIER DESIGN

Piles: Min, 2 7/8" O.D. X 0.276" W.T. with a triple helix 8",10",12" (Or approved equal)
Pile Finish: Hot Dip Galvanized
Max Pier spacing: See attached drawing for locations

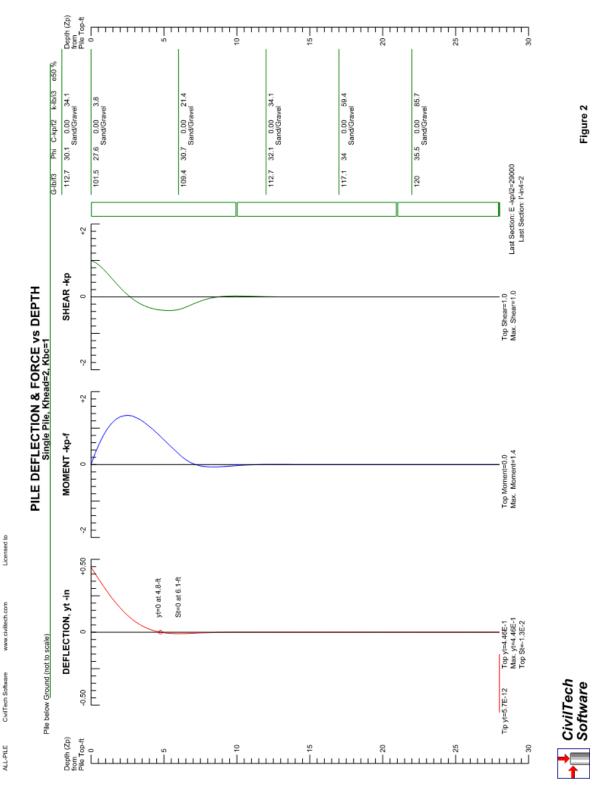
Allowable geotechnical loads (FS=2)

- Axial Compression: 15K
- Axial Tension: 5K
- Lateral: 1K

INSTALLATION NOTES

- Required minimum installation torque: 3333 ft-lbs.
- Torque not to exceed: 7,500 ft-lbs.
- Minimum helical plate depth below ground surface is 10 feet.
- Piles may need to be installed beyond the specified depth to achieve required torque.
- Lock off pier bracket to pier shaft per note 5 on cut sheet
- Geotechnical information has been provided for the project by Thompson Engineering (Project # 21-1101-0057) If installed pier length in fluid soil exceeds 5ft contact ESOG engineering department.

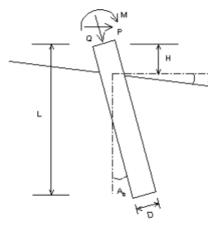
2260 Northwest Parkway Suite E Marietta, GA 30067


Engineering For Piers 15-39

		Helic	al Piles '	15-39 Axial	Capaci	ty Calculations			
Project N	Vame:	Solids Building Meyers	Plant						
	Number:		icani.						
Project 7		LEGIO							
Project A									
1 10,0017		Semmes, AL,					IVIAU	-LCC	
Compan	v Namo	Engineered Solutions of	Georgia				CIVIL	PRODUC	ств
Prepareo		9		rk E. Tomine	w.				
Date	u by.	Wednesday, February 2		K L. TOITING	y				
Date									
David	ID.	SOIL BORING		Casuadoust	24 (4)			S (Allowable)	luin n
Borir	ng ID:	B-2		Groundwat	Friction	Required Compres Required Tension		15	kips
Depth	Soil	Helical Pile Diagram	Unit	Cohesion		Required Tension	Loau.	10	kips
(ft)	Type	Helical Pile Diagram	Weight	(225)	Angle				
		L	(pcf)	(psf)	(deg)				
1	Sand	11	115	0	30			FIGURATION	
2	Sand	11	115	0	30			NFIGURATION	
3	Sand	11	115	0	30	2.875" O.D. Pipe (0	0.203" Wall Th	iickness) installe	d with a
4	Sand		115	0	27	batter angle of 0 de	egrees to a de	pth of 21 feet fol	lowed by
5	Sand		115	0	27	2.875" O.D. Pipe (0.203" Wall Th	ickness) beginn	ing at a
6	Sand		115	0	27	depth of 14 feet. TI			
7	Sand		115	0	27	NCB060604CP1B			
8	Sand		115	0	27				
9	Sand		115	0	29	Helix 6:	None		
10	Sand		115	0	29	Helix 5:	None		
11	Sand		115	0	29	Helix 4:	None		
12	Sand		115	0	29	Helix 3:	12 in	located at	16.5 ft
13	Sand		115	0	29	Helix 2:	10 in	located at	19 ft
14	Sand		115	0	29	Helix 1:	8 in	located at	21 ft
15	Sand	11	115	0	29				
16	Sand		115	0	29	SAF	ETY FACTOR	RS APPLIED	
17	Sand		115	0	29	Compression:	2	Tension:	3
18	Sand		115	0	29			Buckling:	2
19	Sand	-+	120	Ō	31			Date in the second	
20	Sand	11	120	ŏ	31	C	ALCULATION	RESULTS	
21	Sand	+2	120	õ	31	Ultimate Geotechn			
22	Sand	V =	120	ŏ	31	46.83 kips	>	30 kips	PASS
23	Sand		120	ŏ	31	Ultimate Geotechn	-		17100
24	Sand		120	ő	31	40.95 kips		30 kips	PASS
24	Sand		120	0	31	Mechanical Compr	ossion Canaci		FA33
25	Sand		120	0	37	70 kips	ession Capaci >	30 kips	PASS
20	Sand		125	0	37		-		FM33
				+	-	Mechanical Tensio	n Capacity of >		DACC
28	Sand		125	0	37	70 kips	>	30 kips	PASS
29	Sand		125	0	37	Buckling Strength:		00 bins	D 400
30	Sand		125	0	37	70 kips	>	30 kips	PASS
31	Sand		125	0	37	Torque Capacity:			
32	Sand		125	0	37	7500 ft-lbs	>	3333 ft-lbs	PASS
33	Sand		125	0	37	_			
34	Sand		125	0	37	Torque Capacity B	ased on Kt Fa	ctor = 9	
35	Sand		125	0	37				
36	Sand		125	0	37				
37	Sand		125	0	37				
		NOTES				CAT	ALOG NUMB	ERS	
This heli	cal pile c	onfiguration is based on i	ndustry sta	andard	Iter	m Description	IC)#	Qty
		gies. If your project requi			Bracket			3060604CP1B	1
		duct, please contact Ma			Extensio	n Shaft		P28E84	2
		eanpower.com. Prior to fi				n Shaft w/ Helix 1		N/A	0
	-	conducted with the propo				n Shaft w/ Helix 2		N/A	0
	mmende		seu pile o	unguration		irst Extension		N/A	0
are reco	mineride	u.			Lead Sha			P2884S81012	1
L									

2260 Northwest Parkway Suite E

Marietta, GA 30067


Suite E

2260 Northwest Parkway

Marietta, GA 30067

LATERAL ANALYSIS

Figure 2

Drilled Pile (dia <=24 in. or 61 cm)

Loads: Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap= 0 % Shear Condition: Static

(with Load Factor) Vertical Load, Q= 15.0 -kp Shear Load, P= 1.0 -kp Moment, M= 0.0 -kp-f

Profile:

Pile Length, L= 28.0 -ft Top Height, H= -2 -ft Slope Angle, As= 0 Batter Angle, Ab= 0 Free Head Condition

Soil D)ata:						Pile Da	ata:					
Depth	Gamma	Phi	С	К	e50 or Dr	Nspt	Depth	Width	Area	Per.	1	E	Weight
-ft	-lb/f3		-kp/f2	-lb/i3	%		-ft	-in	-in2	-in	-in4	-kp/i2	-kp/f
0	112.7	30.1	0.00	34.1	30.24	8	0.0	2.875	2.7	9.0	2.1	29000	0.012
2	101.5	27.6	0.00	3.8	10.31	2	10.0	2.875	2.7	9.0	2.1	29000	0.008
8	109.4	30.7	0.00	21.4	23.94	6	21.0	2.875	2.7	9	2.1	29000	.008
14	112.7	32.1	0.00	34.1	30.24	8	28.0	2.875	6.5	9	2.1	29000	.008
19	117.1	34	0.00	59.4	40.01	12							
24	120	35.5	0.00	85.7	48.08	16							

Single Pile Lateral Analysis:

Top Deflection, yt= 0.44600-in

Max. Moment, M= 1.35-kp-f

Top Deflection Slope, St= -0.01300

OK! Top Deflection, 0.4460-in is less than the Allowable Deflection= 1.00-in

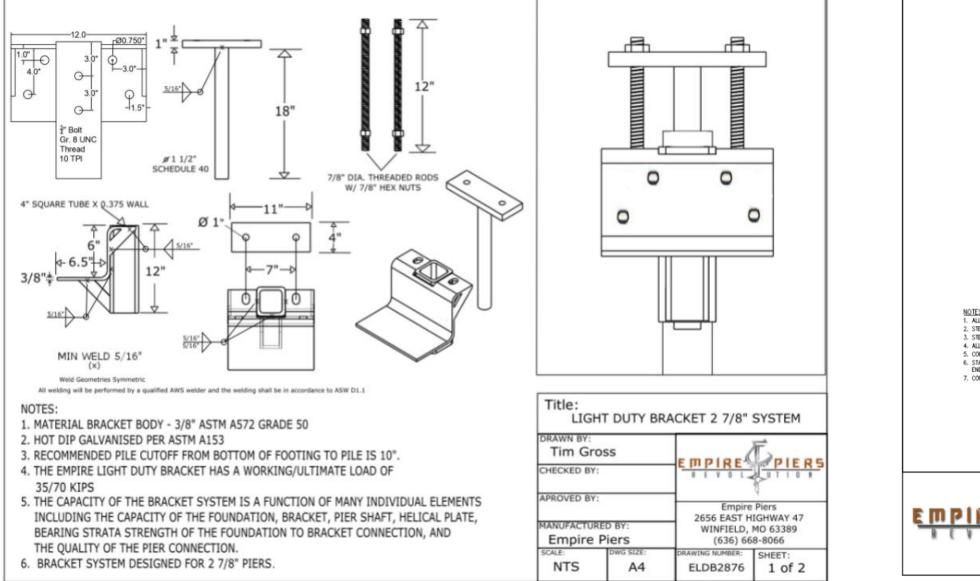
Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not, the pile may fail under the load conditions.

2260 Northwest Parkway Suite E

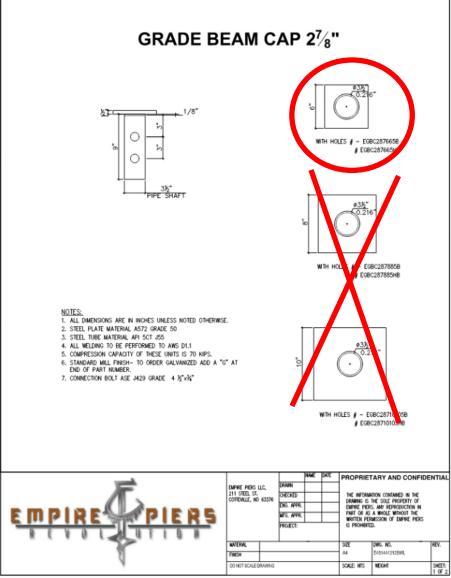
Marietta, GA 30067

Combined Axial & Bending Capacity For Pipe Piles

Casing	Helical Piers 15-39	
Casing O.D=		
Casing w.t=		
Corrosion Allowance=		
Casing I.D=		
	2.254 in ²	
	1.871 in ³	
F _v =		
,		
Required Axial Strength (P)=	15.0 kips	
Required Flexural Strength (M)=	1.4 k-ft	
hequirea Hexarar balengar (m)-	2.7 6 10	
Axial		
Nominal Axial Strength		
P _n =F _y *A	112.7 Kips	
Allowable Axial Strength		
Ω_{axial}	1.67	
$P_{a (axial)} = P_{n} / \Omega_{axial}$	67.5 Kips	
Tast Avial Strongth		
Test Axial Strength Ω_{Test}	1.3	
$P_{a (test)} = P_n / \Omega_{test}$		
Fa (test)=Fn/ ¥2 test	90.1 Kips	
Bonding		
Bending Nominal Flexural Strength		
M _n =F _v *Z	93.6 k-in	
	7.8 k-ft	
Allowable Flexural Strength		
Ω_{bending}	1.67	
Ma (bending)=Mn/ Ω bending	4.7 k-ft	
Test Flexural Strength		
Ω_{Test}	1.3	
Ma _(test) =Mn/Ω _{test}	6.2 k-ft	
treation of the set		
Combined Strength		
P/Pa _(bending) + M/Ma (bending)	0.52	Pile Ok


AISC Steel Manual (13th Edition) SectionH1-1

2260 Northwest Parkway Suite E Marietta, GA 30067


Cut Sheets For Piers

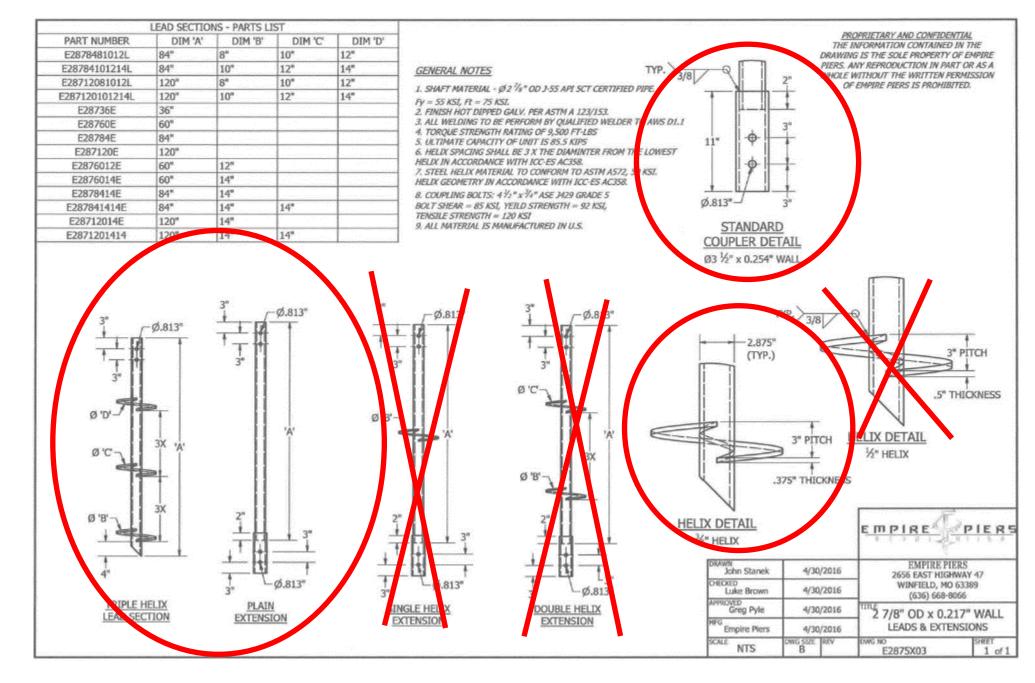
BRACKET DETAILS

Pier Bracket for Pier @ Existing Footings (See below for bolt pattern design)

A Lifetime of Support

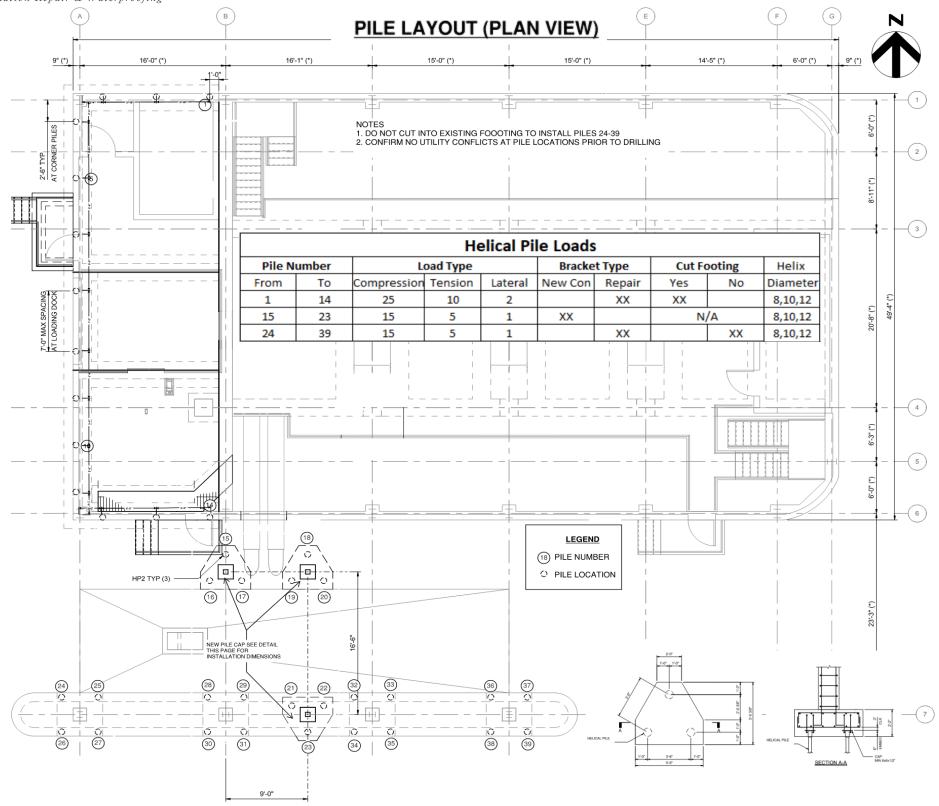
2260 Northwest Parkway Suite E Marietta, GA 30067

Top Connection for Pier



LEAD, EXTENSION & COUPLER DETAILS

A Lifetime of Support


2260 Northwest Parkway Suite E Marietta, GA 30067

2260 Northwest Parkway Suite E Marietta, GA 30067

2260 Northwest Parkway Suite E Marietta, GA 30067

ANCHOR BOLT PATTERN DESIGN FOR UNDERPINNING BRACKET <u>TO FOOTING</u>

SIMPSON

Strong-I

Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	5/12/2022
Engineer:	Page:	1/6
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel (Galvanized) Diameter (inch): 0.625 Nominal Embedment depth (inch): 5.500 Effective Embedment depth, h_{ef} (inch): 4.240 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 8.50 c_{ac} (inch): 6.38 Cmin (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 5/8"Ø Titen HD, hnom:5.5" (140mm) Code Report: ICC-ES ESR-2713

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Uncracked Compressive strength, f'c (psi): 3500 $\Psi_{c,V}$: 1.4 Reinforcement condition: B tension, B shear Supplemental reinforcement: No Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

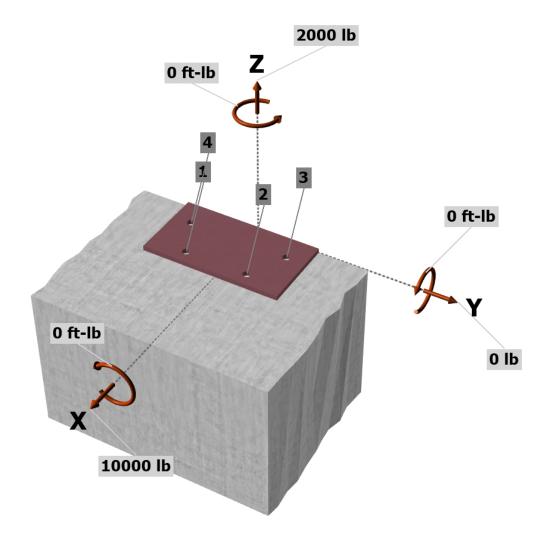
Base Plate

Length x Width x Thickness (inch): 6.00 x 11.00 x 0.38

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.0

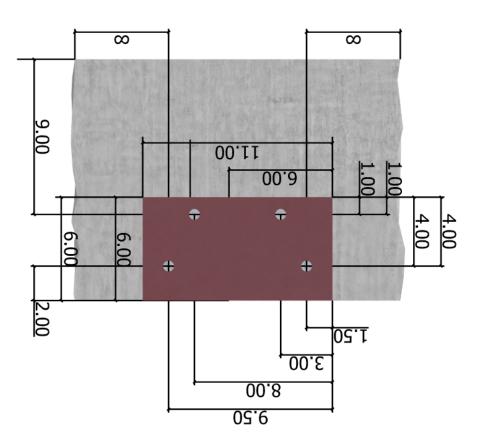

Company:	Date:	5/12/2022
Engineer:	Page:	2/6
Project:	-	
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 2000 V_{uax} [lb]: 10000 V_{uay} [lb]: 0 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 0

<Figure 1>



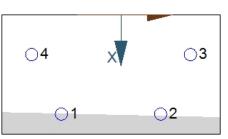
Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	5/12/2022
Engineer:	Page:	3/6
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

ON Anchor Designer™	Company:	Date: 5/12/2022
	Engineer:	Page: 4/6
Lie Software	Project:	· · · ·
Version 3.0.7947.0	Address:	
9	Phone:	
	E-mail:	

3. Resulting Anchor Forces


Stron

Anchor	Tension load, N _{ua} (Ib)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	0.0	2266.4	-140.2	2270.7
2	42.6	2733.6	-140.2	2737.2
3	1586.1	2873.8	140.2	2877.2
4	1493.7	2126.2	140.2	2130.8
Sum	3122.3	10000.0	0.0	10016.0

Maximum concrete compression strain (‰): 0.05 Maximum concrete compression stress (psi): 235 Resultant tension force (lb): 3122 Resultant compression force (lb): 1122 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.68 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.96 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (Ib)
30360	0.65	19734

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Kc	λa	f'₀ (psi)	<i>h</i> ef (in)	Nb (lb)				
24.0	1.00	3500	4.240	123	96				
$\delta N_{cbg} = \phi (A)$	Nc / ANCO) ¥ec,N S	Ved,N ¥c,N ¥cp,NN	(Sec. 17.3.1 8	& Eq. 17.4.2.	1b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (lb)
211.38	161.80	2.00	0.785	0.794	1.00	0.998	12396	0.65	6548

$\Psi_{c,P}$	λa	N _P (lb)	f'c (psi)	n	ϕ	$\phi N_{ m pn}$ (lb)
1.0	1.00	9810	3500	0.50	0.65	7545

Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	5/12/2022
Engineer:	Page:	5/6
Project:		
Address:		
Phone:		
E-mail:		

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

SIMPSON

Strong-Tie

Vsa (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)
10000	1.0	0.60	6000

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear per	pendicular to	edge in x-dire	ction:							
$V_{bx} = \min[7(I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c} c_{a1}^{1.5}; 9\lambda_a \sqrt{f_c} c_{a1}^{1.5}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$										
<i>l</i> e (in)	da (in)	λa	ť _c (psi)	<i>C</i> a1 (in)	V _{bx} (lb)					
4.24	0.625	1.00	3500	9.00	12964	_				
$\phi V_{cbgx} = \phi ($	Avc / Avco) Yec, v	led, ∨ Ψc, ∨ Ψh, ∨Vbx	(Sec. 17.3.1 & E	q. 17.5.2.1b)						

A_{Vc} (in ²)	A_{Vco} (in ²)	Ψec, V	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
384.00	364.50	0.978	1.000	1.400	1.061	12964	0.70	13884

Shear parallel to edge in x-direction:

$V_{by} = \min[7($	le / da) $^{0.2}\sqrt{d_a\lambda_a}\sqrt{f'}$	'c C a1 ^{1.5} ; 9λa√ f 'c C	a₁ ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
Ie (in)	da (in)	λa	f' _c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
4.24	0.625	1.00	3500	2.00	1358			
$\phi V_{cbgx} = \phi (2$)(A _{Vc} / A _{Vco}) $\Psi_{ec,V}$	∕ Ψed, V Ψc, V Ψh, V	/ _{by} (Sec. 17.3.1,	17.5.2.1(c) & Ec	ą. 17.5.2.1b)			
A_{Vc} (in ²)	A _{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbgx} (lb)
36.00	18.00	1.000	1.000	1.400	1.000	1358	0.70	5324

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cp} = \phi k_c$	$c_p N_{cb} = \phi k_{cp} (A_{Nc})$	' A _{Nco}) Ψ _{ed,N} Ψ _{c,N}	$\Psi_{cp,N}N_b$ (Sec.	17.3.1 & Eq. 1	7.5.3.1a)				
<i>k</i> _{cp}	A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cp} (lb)	
2.0	47.48	161.80	0.794	1.000	0.998	12396	0.70	4036	

11. Results

Interaction of Tensile and Shear Forces (Sec. R17.6)

Tension	Factored Loa	id, N _{ua} (lb)	Design S	trength, øNn (lb)	Ratio		Status
Steel	1586		19734		0.08		Pass
Concrete breakout	3122		6548		0.48		Pass (Governs)
Pullout	1586		7545		0.21		Pass
Shear	Factored Loa	ad, V _{ua} (Ib)	Design S	trength, øV _n (lb)	Ratio		Status
Steel	2877		6000		0.48		Pass
T Concrete breakou	ıt x+ 10000		13884		0.72		Pass (Governs)
Concrete breakou	ıt x- 280		5324		0.05		Pass (Governs)
Pryout	2877		4036		0.71		Pass
Interaction check	(Nua/\$Nua) ^{5/3}	(Vua∕φVua) ^{5/3}	Combined Ration	o F	Permissible	Status
Sec. R17.6	0.29	0.58		87.0%		1.0	Pass

5/8"Ø Titen HD, hnom:5.5" (140mm) meets the selected design criteria.

Company:	Date:	5/12/2022
Engineer:	Page:	6/6
Project:		
Address:		
Phone:		
E-mail:		

12. Warnings

- For irregular anchor patterns, the designer must consider sizing of base plate holes to ensure shear loads are distributed to anchors as designed.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.